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Abstract

A probabilistic, nonlinear supervised learning model is proposed: the Specialized Mappings Archi-

tecture (SMA). The SMA employs a set of several forward mapping functions that are estimated auto-

matically from training data. Each specialized function maps certain domains of the input space (e.g.,

image features) onto the output space (e.g., articulated body parameters). The SMA can model ambigu-

ous, one-to-many mappings that may yield multiple valid output hypotheses. Once learned, the mapping

functions generate a set of output hypotheses for a given input via a statistical inference procedure.

The SMA inference procedure incorporates an inverse mapping or feedback function in evaluating the

likelihood of each of the hypothesis. Possible feedback functions include computer graphics rendering

routines that can generate images for given hypotheses. The SMA employs a variant of the Expectation-

Maximization algorithm for simultaneous learning of the specialized domains along with the mapping

functions, and approximate strategies for inference. The framework is demonstrated in a computer vision

system that can estimate the articulated pose parameters of a human’s body or hands, given silhouettes

from a single image. The accuracy and stability of the SMA are also tested using synthetic images of

human bodies and hands, where ground truth is known.

Keywords: Supervised learning, statistical inference, mixture models, Expectation Maximization algo-

rithm, articulated structure estimation, human body pose, hand shape.
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1 Introduction

A fundamental task for vision systems is to infer the state of the world given some form of visual obser-

vations. From a computational perspective, this often involves facing an ill-posed problem: information

is lost via projection of the three-dimensional world into a two-dimensional image. As a result, it is often

the case that multiple valid interpretations of an image are possible. Solving an ill-posed problem requires

additional information, usually provided as a model of the underlying process. In their day to day life,

humans are surprisingly adept at interpreting the visual world, despite the ill-posed nature of the problem.

For example, humans can easily estimate the articulated pose and motion of people in a scene, given only

relatively low-resolution, monocular images of the world, e.g., from a photograph or a video. It is believed

that humans employ extensive prior knowledge about human body structure and motion in this task [22].

Assuming this, in this paper we will consider how a computer might learn the underlying knowledge in the

form of a probabilistic model, and thereby infer pose from a single image.

Let us consider an example pose inference task: given only a person’s silhouette, estimate that person’s

articulated body pose. To be concrete, let us define articulated pose in terms of: (a) the 2D locations of

the person’s joints in the image, or (b) the 3D locations of the person’s joints in Euclidean space. Imagine

drawing marks on the silhouette image that approximately label the joints: left elbow, right elbow, left

knee, right knee, and so on. Also consider a plausible 3D pose interpretation for this silhouette. While this

inference task seems relatively simple for a human to perform, the task is quite challenging, using either

representation (a) or (b), for current computer vision systems.

For purposes of computation, the above inference task can be defined as follows: given an observation

vector of cues x ∈ <c that were extracted from an image of a person, infer the articulated pose parameter

vector h ∈ <t. Assume these input and output spaces <c and <t are continuous. In a generic machine

learning framework, inference might be achieved via a mapping function φ : <c → <t that for a given input

(cues) computes the correct output (a single pose, or more generally a pose probability distribution). While

the apparent simplicity of this strategy is alluring, it leaves a number of nettlesome open issues: how to

select the appropriate functional form for this mapping, how to estimate (learn) this function from data, and

how to perform inference.

The functional form required for this mapping φ may not be simple, because the mapping from cues to

articulated poses is generally ambiguous (one-to-many). In fact no single function can perform this mapping.

An example is illustrated in Fig. 1 (R1 and R2). The arm locations cannot be uniquely inferred given the

silhouette x; therefore, a–h are all possible pose hypotheses. Note also that pose c is the reflection of a: the
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Figure 1: Example ambiguity in mapping body silhouette cues in <c to articulated body poses in <t. Given silhouette
x, poses a–h are all valid hypotheses. In general, entire regions in <t may contain valid poses.

camera looks at the back rather than at the front of the body. In practice, there may be entire regions in < t

that contain valid poses associated with the silhouette, as shown in Fig. 1. Thus, there might be an infinite

number of valid poses for a particular input. Moreover, the regions of valid poses need not be connected. For

instance, different regions in <t may correspond to ranges of valid poses, e.g., some viewed from the front

and others from behind. Such ambiguities are not particular to human body pose; for instance, analogous

inference problems exist in estimating hand pose from image features, as will be seen later.

Let us now consider the inverse problem: given an articulated pose vector a, generate its silhouette cues

x. With a good computer graphics model of the human body, one can easily render the silhouette x. Thus,

we can easily compute the inverse mapping ζ : <t → <c. Many real world problems share the property that

their inverse problem is simpler, e.g., speech recognition. In fact, this property is a key part of our problem

definition and it will play an important role in developing the framework presented in this paper.

We now have a notion of the input and output spaces, the forward and inverse relationships associated

with them, and a few basic difficulties that can arise in the context of our example application. The mapping

of inputs (cues) to outputs (poses) is ambiguous and one-to-many; this precludes the use of supervised

learning methods that fit a single function to the data, e.g., most neural networks, support vector machines,

least squares estimation, boosting, etc. On the other hand, we have access to the inverse map ζ : <t → <c,

which we can exploit in formulating a solution to the learning problem.

In this paper, we describe a probabilistic, nonlinear supervised learning framework: the Specialized

Mappings Architecture (SMA). The SMA employs a set of M mapping functions φk : <c → <t, where

each specialized function maps certain sub-domains of the input space (cues) onto the output space (poses).

The sub-domains of φk need not be connected regions in the input or output spaces. The SMA mapping

functions are estimated automatically from training data, via a supervised learning procedure. A variant of
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(a) (b)

Figure 2: Inference in the specialized mappings architecture. (a) Given an input vector x, the mapping functions φk

generate a set of hypotheses. (b) The inverse mapping function ζ is employed in evaluating the likelihood of each
hypothesis.

the Expectation-Maximization algorithm is used for simultaneous learning of the specialized domains along

with the mapping functions. Once the SMA model is learned, approximation strategies, based on sampling,

make the SMA’s inference tractable and fast. The basic concepts of SMA inference are illustrated in Fig.

1. For a given input x, the mapping functions generate a set of output hypotheses. The SMA inference

procedure then exploits an inverse mapping ζ in evaluating the likelihood of each hypothesis.

An important advantage of the SMA is that it can model ambiguous, one-to-many mappings that may

yield multiple valid output hypotheses. Unlike other learning approaches that employ a set of mapping

functions (e.g., [12, 16, 24]), the SMA incorporates an inverse mapping ζ in probabilistic inference. The

framework is evaluated in a computer vision system that can estimate the articulated pose parameters of a

human body or human hands, given real image silhouettes. The accuracy and stability of the SMA are also

tested using synthetic images of human bodies and hands, where ground truth is known.

2 Related Work

In computer vision, recovery of articulated body pose from images is often formulated as a tracking problem.

Usually, link-joint models comprised of 2D or 3D geometric primitives are designed beforehand to roughly

match the specific morphology of the target in question [7, 10, 13, 27, 31, 36, 38]. Mesh models have also

been used as an alternative to link-joint models [15]. At each frame, these models are fitted to the image to

minimize some cost function that favors the overlap of the model and associated image regions (or motion).

Despite their descriptive power, this family of approaches has a number of critical drawbacks. Generally,

a non-linear optimization problem must be solved at every frame. Careful manual placement of the model

on the first frame in a video sequence is also required. Moreover, tracking in subsequent frames tends to
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be sensitive to errors in initialization and numerical drift; as a result, these systems cannot recover from

tracking errors in the middle of a sequence.

To address these weaknesses, specialized dynamical models have been proposed [20, 27, 29]. These

methods learn a prior distribution over some specific motion class, such as walking. This prior is used to

predict and hopefully improve the pose estimates in future frames. However, this strong prior substantially

limits the generality of the motions that can be tracked; a prior for a given class of motions is generally

useless when used for tracking objects undergoing a different class of motion, e.g., walking vs. dancing.

Other methods for constrained tracking include [4, 5], where a subspace of allowable motions is learned

from a set of examples. These examples and the model (usually linear) are hoped to be sufficient to span the

set of possible motions to be seen during tracking. Thus, pose inference involves finding a linear projection

of the observed data onto the motion subspace. This subspace approach enforces a strong prior; as mentioned

previously, this limits the generalization of the model to classes of motions not seen in the training set.

Furthermore, articulated motion is generally non-linear, and cannot be easily explained as a linear projection.

In our approach we avoid matching image features (e.g., image regions, points, or articulated models)

from frame to frame. Therefore, we do not refer to our approach as tracking, per se. This is in direct contrast

with the techniques mentioned above. A number of other approaches also depart from the aforementioned

tracking paradigm. We summarize these next.

In [18] a statistical approach is employed in reconstructing the 3D motions of a human figure. The

approach employs a Gaussian probability model for short human motion sequences. It is assumed that

2D tracking of the joint positions in the image is given; therefore, this assumption implicitly incurs the

restrictions found in all tracking approaches.

In [39] dynamic programming is used to calculate the best global matching of image points to predefined

body joints, given a learned probability density function of the position and velocity of body features. Al-

though not explicitly mentioned by the authors, the probability function is defined by a triangulated acyclic

graph. Thus, inference is feasible due to the running intersection property [23, 30]. Still, in this approach,

the image points and model initialization must be provided by hand or through some other method.

In [6], the manifold of human body dynamics is modelled via a hidden Markov model with an entropic

prior. Once the states are inferred from observations, a quadratic cost function is used to generate a contin-

uous path in configuration space, i.e., body pose space.

In all of the non-tracking approaches mentioned [6, 18, 39] models of motion were estimated from

data. Although the approach presented in this paper can be used to model dynamics, we argue that when

general human motion dynamics are to be learned, the amount of training data, model complexity, and
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number of training examples N

training set Z = {z1, ..., zN}

training example (input,output) pair zi = (υi, ψi)

input (feature) training vector υi ∈ <c

output (pose) training vector ψi ∈ <t

feedback (rendering) function ζ : <t → <c

number of mapping functions M

k-th input-output mapping function φk : <c → <t

mapping function parameter vector θk

output (pose) hypothesis h = φk(x, θk),h ∈ <t,x ∈ <c

most likely output hypothesis h∗

SMA mapping functions Φ = {φ1, . . . , φM}

discrete set of labels for mapping functions C = {1, . . . ,M}

hidden random variables assigning mapping functions to training samples y = (y1, . . . , yN), yi ∈ C

prior probability that mapping function φk will be used λk = P (y = k)

prior probability on mapping functions λ = (λ1, . . . , λM )

SMA parameters (to be learned) θ = (θ1, . . . , θM , λ)

responsibility of k-th mapping function for zi P̃ (yi = k)

Table 1: Some mathematical symbols used in the SMA formulation.

computational resources required are impractical. As a consequence, models with unacceptably large priors

towards specific motions are generated. Although by not modelling the dynamics we may be ignoring

information that could be used to further constrain the inference process, there are some benefits. For

instance, a model for inferring body pose that does not consider dynamics provides invariance with respect

to speed (i.e., sampling differences) and direction in which motions are performed. This happens simply

because this model treats configurations as temporally independent of each other. Other approaches that use

a single image include [3, 14, 25, 28, 40]; however, most of these methods also require that projected joint

locations be given as input. In our approach this is not necessary.

Our approach maps visual features to likely body configurations. Following a machine learning paradigm,

stochastic functions that map visual features to pose parameters are approximated from training data. A

unique aspect of our approach is the combined use of (1) these mapping functions with (2) the inverse

mapping function ζ . After multiple poses have been inferred from just the visual cues, ζ transforms these

pose configurations back to the visual cue (observation) space. In this space, we can then automatically

choose among a set of reconstruction hypotheses. This is a fully probabilistic inference process. Our ap-

proach avoids the need for manual initialization or tracking; it thereby avoids the consequent disadvantages

of tracking. Remarkably, relatively few computations are required for inference. We will now formalize and

explain the SMA in detail.
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3 Probabilistic Model

In the SMA, a set of mapping functions is estimated from training data, via a supervised learning procedure.

Let Z = {z1, ..., zN} be an observed training set of input-output pairs zi = (υi, ψi). Each υi ∈ <
c

is an input (feature) vector, and each ψi ∈ <t is its corresponding output (pose) vector. A summary of

mathematical symbols used in the SMA formulation is provided in Table 1.

We will approach our forward problem as one of hidden variable density estimation. We begin by

introducing the unobserved random variable y = (y1, . . . , yN ). In our model any yi has as its domain

the discrete set C = {1, . . . ,M} of labels for the specialized mapping functions, and can be thought of as

the function number used to map the i-th training pair, zi. Thus M is the number of specialized mapping

functions. Our model uses parameters θ = (θ1, . . . , θM , λ), where θk represents the parameters of the k-th

mapping function, and λ = (λ1, . . . , λM ), where λk represents P (y = k), the prior probability that the

mapping function with label k will be used to map an input-output pair.

Taking a maximum-likelihood viewpoint, we are interested in finding the optimal parameter settings for

our model; thus, we seek to maximize the joint log-probability:

θ∗ = arg max
θ

log p(Z|θ). (1)

Assuming independence of observations given θ, and using Bayes’ rule we obtain:

θ∗ = arg max
θ

∑

i

log p(zi|θ) (2)

= arg max
θ

∑

i

log
∑

k

p(zi|yi = k, θ)P (yi = k|θ) (3)

= arg max
θ

∑

i

log
∑

k

p(ψi|υi, yi = k, θ)P (yi = k|θ)p(υi), (4)

where we used the independence assumption p(υ|θ) = p(υ). Note that because the inputs, υi do not depend

on the model parameters we can ignore their distribution when finding the optimal parameter settings.

Due to the sum of terms inside the logarithm of Eq. 4, this optimization is generally intractable. How-

ever, a variety of practical approximate optimization methods exist, for example, methods that are based on

alternating minimizations [8]. An Expectation Maximization (EM) [9, 26] method is described in Sec. 4.

3.1 Choice of a Likelihood Function

Note that the above formulation is general. In particular, the form of the probability p(ψi|υi, yi = k, θ) was

not specified. A key question in instantiating the specialized mapping architecture is: what form should be
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used for p(ψ|υ, y, θ)? This is the probability that output ψ was generated by the mapping function y, given

the input υ and model parameters θ. In this work we analyze the following possible cases:

1. A Gaussian joint distribution of input-output vectors:

p(υ, ψ|y, θ) = N ((υ, ψ);µy ,Σy), (5)

2. A Gaussian distribution, whose mean is the output of the y-th mapping function:

p(ψ|υ, y, θ) = N (ψ;φy(υ, θ),Σy). (6)

One way to interpret (2) is that the error in estimating ψ, given we know what mapping function to use, is

Gaussian distributed. These are the two forms tested in our experiments; however, the SMA formulation is

general, and can accept other forms for the likelihood function.

4 Learning

As explained above, an approximation method must be used in learning the SMA parameters. We will

employ an Expectation Maximization (EM) approach. EM provides a general framework for solving the

maximum likelihood parameter estimation problem in statistical models with hidden variables, like Eq. 4.

Since the EM algorithm is well known [9, 2, 26], we will only provide derivations specific to the SMA.

Note that the unobserved random variables yi are assumed independent, given zi. Thus, the E-step

reduces to computing the posterior probabilities for each yi given the model parameters and observed data:

P̃ (t)(yi = k) = λkp(ψi|υi, yi = k, θ(t−1))/
∑

j∈C

λjp(ψi|υi, yi = j, θ(t−1)). (7)

Stated differently, this step estimates the responsibility of each mapping function, φk for each data point, zi.

The M-step consists of finding θ(t+1) = arg maxθ EP̃ (t) [log p(Z,y|θ)]. In both of our cases we can

show that this is equivalent to finding:

θ(t+1) = arg max
θ

∑

i

∑

k∈C

P̃ (t)(yi = k)[log p(zi|yi = k, θ) + logP (yi = k|θ)]. (8)

It is important to mention that this is valid if p(zi|θ) depends on yi and not on yj , for any j 6= i. Note

that for the distributions discussed above, this is true. We present solutions for the cases described above.
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4.1 Case (1)

In this case we have:

p(υ, ψ|y, θ) = N (µy,Σy) = N (

[

µυ

µψ

]

,

[

ΣυυΣυψ

Σ>
υψΣψψ

]

)y. (9)

In this case, we can show that the SMA parameter learning problem is reduced to a mixture of Gaussian

estimation, for which it is straightforward to estimate θ using EM. Moreover, the Bayesian estimate of ψ

given an observed υ is also Gaussian:

p(ψ|υ, y, θ) = N (µψ + Σ>
υψΣ−1

υυ (υ − µυ),Σψψ − Σ>
υψΣ−1

υυΣυψ)y. (10)

Therefore in case (1), each specialized function φk is just the mean of the conditional distribution

φk(υ, θ) = (µψ + Σ>
υψΣ−1

υυ (υ − µυ))y=k. (11)

The confidence of the estimate is given by the covariance Σk = (Σψψ − Σ>
υψΣ−1

υυΣυψ)y=k. However, this

expression does not depend on the input, a sometimes undesirable consequence of the given model. Thus,

each function φk is linear in the input vector from <c.

4.2 Case (2)

In this case we have:

∂E

∂λk
=

∑

i

P̃ (t)(yi = k)
∂

∂λk
log P (yi = k|θ) (12)

∂E

∂Σk
=

∑

i

P̃ (t)(yi = k)
∂

∂Σk
log p(ψi|yi = k, υi, θk) (13)

∂E

∂θk
=

∑

i

P̃ (t)(yi = k)[(
∂

∂θk
φk(υi, θk))

>Σ−1
k (ψi − φk(υi, θk))], (14)

where E is the cost function that we would like to maximize in Eq. 8.

This gives the following update rules for λk and Σk, where Lagrange multipliers were used to incorpo-

rate the constraint that the sum of the λk’s is 1:

λ
(t+1)
k =

1

N

∑

i

P̃ (t)(yi = k) (15)

Σ
(t+1)
k =

∑

i P̃
(t)(yi = k)(ψi − φk(υi, θk))(ψi − φk(υi, θk))

>

∑

i P̃
(t)(yi = k)

(16)

To keep the formulation general, we have not yet defined the form of the specialized functions φk.

Whether or not we can find a closed form solution for the update of θk depends on the form of φk. For

example if φk is a non-linear function, we may have to use iterative optimization to find θ (t)
k . If φk yields a

quadratic form, then a closed form update exists.
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4.3 Stochastic Learning

The aforementioned optimization equations can be used to find a local minimum given the initial parameter

values. In order to improve this process, and avoid some of the local minima that inevitably arise, we use an

annealing schedule on the P̃ (t) probabilities during the M-step. In this way, we redefine:

P̃ (t)(yi = j)←
elog(P̃ (t)(yi=j))/T (t)

∑

k∈C e
log(P̃ (t)(yi=k))/T (t)

. (17)

In our experiments, the temperature parameter T decays exponentially. This step not only helps in

avoiding local minima, but it also creates two desirable effects. It forces P̃ (t)(yi = j) to be binary (either

1 or 0) at low temperatures; as a consequence each point will tend to be mapped by only one specialized

function at the end of optimization. Moreover, it makes P̃ (t)(yi = k) (k = 1, 2, ...,M ) be fairly uniform at

high temperatures, making the optimization less dependent on initialization.

5 Inference

Learning yields a set of specialized functions that map the input space to the output space. As a result of

the divide and conquer strategy employed in learning, each of the specialized functions maps different parts

of the input space with different levels of accuracy. The mapping behavior of each function is described

probabilistically. We can now formulate inference in terms of maximum a posteriori (MAP) estimation. In

inference, we want to find the most likely output hypothesis h ∈ <t for a given observation x ∈ <c:

h∗ = arg max
h

p(h|x) = arg max
h

∑

y

p(h|x, y)P (y). (18)

Any further treatment depends on the properties of the probability distributions involved.

In both Cases (1) and (2) considered in previous sections, we can write p(h|x, y) = N (h;φy(x),Σy).

Thus, in either case we have a mixture of Gaussians:

h∗ = arg max
h

∑

y

N (h;φy(x),Σy)P (y). (19)

Eq. 19 is the result of using standard (MAP) inference given our learned model. However, we have yet

to make use of the inverse (rendering) function ζ : <t → <c in our framework.

5.1 Maximum A Posteriori Estimation Using the Inverse Mapping Function ζ

The mixing factors in Eq. 19, λy = P (y), do not depend on the input x, which is consistent with our

conditional independence assumption P (y|x) = P (y) in the forward model. This differs from the Mixture
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of Experts (ME) formulation [21, 24], which does not assume P (y|x) = P (y); instead, P (y|x) is assumed

to take a certain form, embodied by a set of gating networks. In [21, 24] the gating networks were modeled

by a logit linear model, learned from data. In the SMA, an entirely different approach can be used due to

the availability of the rendering function ζ , which we call the inverse function or inverse map.

This inverse map ζ can be obtained via computer graphics rendering. For instance, in human pose

estimation, ζ could render an articulated, computer graphics model given pose parameters h. If computer

graphics rendering is unavailable or too slow, an approximate inverse map ζ̂ may be obtained via supervised

learning over a training set of input-output pairs, Z . For example, ζ̂ could employ a multi-layer neural

network, support vector machine, etc. Note that the inverse mapping is assumed to be a function, i.e.,

one-to-one or many-to-one; thus, functional forms for ζ̂ are acceptable.

Given an inverse map ζ , it is possible to derive an expression for the probability of the observed input

x, given the output hypothesis h. For instance, we could employ the Gaussian model1:

p(x|h) = N (x; ζ(h),Σζ), (20)

where Σζ is estimated for a given SMA using a training set. While this is one example of a model for p(x|h)

that incorporates knowledge of ζ , indeed others are possible. Once we have a model for p(x|h), then finding

an optimal h∗ given an input x can be formulated as a continuous optimization problem

h∗ = arg max
h

p(h|x) (21)

= arg max
h

p(x|h)p(h)

p(x)
(22)

= arg max
h

p(x|h)
∫ ∫

p(h,x, y)dxdy

p(x)
(23)

via Bayes’ rule, and marginalizing over x and y.

Since x is observed, say x = xo,
∫

p(h,x, y)dx = δ(x − xo)p(h,x, y) we can rewrite Eq. 23:

h∗ = arg max
h

p(x|h)
∫ ∫

p(h, y|x)p(x)dxdy

p(x)
(24)

= arg max
h

p(x|h)p(x)
∫

p(h, y|x)dy

p(x)
(25)

= arg max
h

p(x|h)
∑

y

p(h|x, y)P (y), (26)

where we assume p(h,x, y) factorizes into p(h|x, y)p(x)P (y), and P (y|x) = P (y) as before.

Unfortunately, finding the maximum of Eq. 26 is generally infeasible [35]. In the following sections, we

describe approximation algorithms for obtaining good estimates of h∗.
1Note that the distribution p(x|h) does not have to be consistent with the forward model p(h|x), i.e., related by Bayes rule in

this case. Indeed the key insight is that they represent different probabilistic models that can be used alternatingly.
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5.2 Non-deterministic Approximate Inference: Multiple Samples (MS)

Let us assume that we can approximate
∑

y p(h|x, y)P (y) by a set of samples generated according to

p(h|x, y)P (y) and a kernel function K(h,hs), such that K(h,hs) ≥ 0 and
∫

K(h,hs)dh = 1 for any

given hs. Given a set of samplesHSpl = {hs}s=1...S , we can construct the approximation
∑

y p(h|x, y)P (y) ≈

1
S

∑S
s=1K(h,hs). We now consider two simple forms for the kernel function K .

If we use a Dirac delta function kernel centered at each sample K(h,hs) = δ(h − hs), then we have:

h∗ ≈ arg maxh p(x|h) 1
S

∑S
s=1 δ(h − hs). This can be reduced to an equivalent discrete optimization

problem where the goal is to find the most likely sample s∗:

s∗ = arg max
s
p(x|hs) = arg min

s
(x− ζ(hs))

>Σζ(x− ζ(hs)), (27)

by using the Gaussian form of p(x|h) as given in Eq. 20.

If instead we use Gaussian kernels centered at each sample K(h,hs) = N (h;hs,ΣSpl), then we have:

h∗ ≈ arg maxh p(x|h) 1
S

∑S
s=1N (h;hs,ΣSpl). This approximation is harder to use in practice. Unlike the

Dirac delta kernel approximation, the Gaussian approximation cannot be reduced to an equivalent discrete

optimization since there is no guarantee that the optimal h for this form is among the samples in general.

5.3 Deterministic Approximate Inference: Mean Output (MO)

The structure of inference in the SMA, as well as the form of p(h|x, y) employed, make it possible to

construct a deterministic approximation to Eq. 26. The basic intuition is straightforward. For a given x, we

ask each specialized function φk to give its most likely estimate for h∗. We then evaluate the probability

of each function’s estimate via the distribution p(x|h). This approximation is good in practice, as will be

demonstrated in the experiments.

To justify this deterministic approximation, we note that the probability of the mean is maximal in a

Gaussian distribution; i.e., it is the most-likely value. Formally, in both Case (1) and Case (2) described

earlier, p(E[h|x, y, θ]) ≥ p(h′|x, y, θ), for any h′. Consider again the set of samples HSpl = {hs}s=1...S

generated in the MS approximation. We can build a set of samplesHφ = {hφk}k=1...M that has the property:

∀y,max
k

p(hφk |x, y) ≥ max
s
p(hs|x, y) (28)

simply by setting h
φ
k = φk(x, θ).

This insight leads to a deterministic approximation for inference, the Mean Output solution (MO). This

approximate solution relies on the observation that by considering the means φs(x), we would be consider-
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ing the most likely output of each specialized function, given the input. The smaller the overlap among the

distributions associated with each specialized function, the better the accuracy of this approximation.

In MO approximate inference, the expression to be minimized is the same as that used in Eq. 27, except

for the use of the M means instead of the S samples:

k∗ = arg max
k∈C

p(x|hφk) = arg min
k∈C

(x− ζ(hφk))
>Σζ(x− ζ(h

φ
k)). (29)

This generally requires substantially less computation than would be required in the MS approach.

5.4 Bayesian Inference

Note that in some applications, instead of a point estimate the most likely output h∗, it may be desirable

to employ an approximation to the full posterior distribution p(h|x). We can show that for the two kernel

functions, K given in Sec. 5.2 we can respectively obtain

p(h|x) ∝
1

S

S
∑

s=1

N (x; ζ(hs),Σζ), (30)

p(h|x) ∝
1

S
N (x; ζ(h),Σζ)

S
∑

s=1

N (h;hs,ΣSpl). (31)

These approximations can be useful in algorithms that carry a distribution over the possible state h. For

example, in the context of dynamic probabilistic models, such as Markov models, one would like to fuse

past pose estimates with new observations, i.e., to obtain distributions of the p(ht|xt,ht−1).

6 Example Application: Articulated Pose from Visual Features

The SMA formulation is rather general, and could be applied in a number of supervised learning problems

for which the output-to-input (feedback) map is relatively easy to compute. To demonstrate and test our

framework, we have developed a system that uses the SMA to infer articulated pose from low-level vi-

sual features. In particular, we focussed on pose estimation of the human hand and body from an image

silhouette. In this class of computer vision applications, ground truth datasets for use in training can be

obtained via motion capture gloves or body suits, and computer graphics rendering can be used to generate

the input-output pairs used in supervised learning. We will now give details of this demonstration system.

6.1 3D Hand Pose Estimation

In this application, our goal is to recover detailed 3D hand pose from silhouette features computed from a

single color image. Hand pose is defined in terms of the hand joint angles. In general, we are also interested
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Figure 3: Example of the 86 silhouettes obtained via computer graphics rendering for a given a 3D hand pose. Views
are distributed approximately uniformly over the view sphere.

in global orientation of the hand. We explore two applications: estimation of the internal joint angles only,

and later, estimation of both internal joint angles and global orientation of the hand.

6.1.1 Hand Model

We utilize the hand model provided in the VirtualHand programming library [41]. The model parameters are

22 joint angles. For the index, middle, ring and pinky finger, there is an angle for each of the distal, proximal

and metacarpophalangeal joints. For the thumb, there is an inner joint angle, an outer joint angle and two

angles for the trapeziometacarpal joint. There are also abduction angles between the following pairs of

successive fingers: index/middle, middle/ring and ring/pinky. Finally, there is an angle for the palm arch, an

angle measuring wrist flexion and an angle measuring the wrist bending towards the pinky finger. However,

because the former two wrist angles also encode global orientation, we decided not to model them in our

application. Hence, ignoring these two angles, our model has 20 DOF for the internal hand configuration.

All of these 20 angles are relative to two global orientation angles. These two angles will encode the

camera viewpoint (or alternatively hand 3D rotation). Imagine a sphere surrounding the hand model, i.e., a

fixed hand center point is at the center of the sphere. For ease of reference, we will employ the widely used

latitude and longitude notions. The first angle β1 represents the latitude from which we are looking at the

hand, the second angle β2 represents the longitude. We have defined β1 ∈ [0, π], with zero and π being the

poles of the sphere and β2 ∈ [0, 2π). Thus, in summary our full hand model has 22 DOF.
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6.1.2 3D Hand Motion Datasets

Using a CyberGlove, we collected approximately 9,000 examples of 3D hand poses. This data included

hand configurations from American Sign Language (ASL) and other configurations informally performed

by several members of our research group. Using computer graphics and an artificial hand model, we then

rendered each captured hand pose from multiple viewpoints on the view sphere. In our implementation,

we defined a set of 86 viewpoint angle pairs (β1, β2) so that the sphere surface is sampled approximately

uniformly. Thus we obtained a full dataset of 9, 000 × 86 views. Each view has an associated binary image

mask (silhouette), and a 22 DOF pose vector. Fig. 3 shows the 86 viewpoints used in the dataset.

¿From these silhouettes, we extract the visual features that will be used for further processing. In our

implementation, we used two classes of features (these features are not used together): Hu moments and

Alt moments. Alt moments [1] are translation and scale invariant, but not rotation invariant. Hu moments

[19] are invariant to translation and scaling, but also invariant to rotation in the image plane. These moment

features were used in our implementation because they are relatively easy to compute, and they provide

invariants that are appropriate for our demonstration application. However, the general SMA formulation

can be used with other visual feature representations if desired. Detailed examination of the feature selection

problem is outside the scope of this paper, and remains a topic for future research.

The above process yields a set of input-output (cue-pose) pairs to be used in our experiments. We define

two experimental datasets:

1. Hand-Single-View: In this dataset, the hand is viewed from only one viewpoint (β1 = π/2, β2 = 0),

generally making the palm of the hand visible. Silhouette features are computed using Alt moments.

This yields approximately 9,000 input-output pairs.

2. Hand-All-Views: In this dataset, the hand is viewed from all 86 viewpoints. Silhouette features are

computed using Hu moments. This yields approximately 750,000 input-output pairs.

6.1.3 Hand Detection and Segmentation

For live video input, we will use video sequences collected with a color digital camera. It will be assumed

that these sequences have a static background and only one person is present. In this implementation, we

are not considering hand occlusion analysis, which by itself is a difficult task. Our system tracks both hands

of the user automatically using a skin color tracker [37, 34].
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6.2 2D Human Body Pose Estimation

In this application, our goal is to recover the articulated pose of a human body observed in a single image.

The methodology followed is very similar to that used in the estimation of hand pose. However, instead of

joint angles, body pose will be specified in terms of marker positions at a predetermined set of joints. The

SMA will estimate the 2D positions of these body markers in the image plane, given visual features as input.

6.2.1 Human Body Model

The human body model is defined in terms of 20 3D marker positions (60 DOF). The 20 markers are

distributed as follows: three markers for the head, three markers for the hip/back bone articulation, plus one

marker for each shoulder, elbow, wrist, hand, knee, ankle, and foot. For computer graphics rendering, the

body model is composed of cylinders of equal width. The cylinders connect the markers to form the standard

human body structure. The thorax is modeled using a wider cylinder. Because we are only interested in the

shape of the projected model, we do not include texture or illumination in our rendering.

6.2.2 Human Body Pose Dataset

Human body motion capture data was obtained from several sources: http://www.biovision.com, Matt

Brand’s dataset [6], and several demo sequences in the software package Character Studio. In total there

are 32 captured sequences that depict variations of different activities: dancing, walking, kicking, wav-

ing, throwing, jumping, signaling, crouching down. The total number of frames collected is approximately

7,000, mostly at 30 frames/second. Using computer graphics and our artificial body model, we then ren-

dered each frame from 16 equally-spaced viewpoints on the equator of the view sphere centered at the hip

of the body model. For each view, we also used the camera model to obtain the 2D marker positions in

the image plane. Thus we obtained a full dataset of approximately 7, 000 × 16 views. Each view has an

associated binary image mask (silhouette), and a 40 DOF projected marker vector.

¿From the silhouettes, we extract the visual features that will be used as input to the SMA. For this

application, we have chosen Alt moments [1] as our visual features, mainly due to their ease of computation

and invariance to translation and scaling.

The above process yields a set of input-output (cue-pose) pairs to be used in our experiments. In this

case, the cues are the Alt moments for a particular view, and the pose is encoded in terms of the projected

locations of the body markers in the image plane (40 DOF). We call this dataset the Body-All-Views dataset.
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6.2.3 Detection and Segmentation

For live video input, we use sequences collected with a color digital camera. It is assumed that these se-

quences have a static background, only one person is present, and the person is fully-visible. We use a simple

and widely-used human body segmentation scheme [17, 42]. The technique employs statistical learning to

acquire a model of the background appearance, where each pixel’s color (luminance) is represented by a

Gaussian distribution. Segmentation is then approached in a maximum-likelihood fashion, where each pixel

is classified as belonging to one of two classes: the background or the foreground (human body).

6.3 Common Implementation Details

We know briefly discuss implementation details common to both applications.

6.3.1 Mapping Functions

In Sec. 3, it was not specified what class of mapping functions φk were to be used. The SMA framework is

practically independent of this choice. However, from Eq. 14 we can notice that there are clear advantages

in the M-step if these functions are differentiable with respect to their parameters. In the case of quadratic or

linear functions, the M-step can be performed exactly in one step. However, the flexibility of these functions

is limited. In our implementation each mapping function is a multi-layer perceptron with one hidden layer

(MLP). For the non-linear one hidden layer perceptrons, there does not exist a closed-form solution for Eq.

14. In our implementation, we used four to five iterations of the conjugate gradient method per M-step.

6.3.2 Feedback Functions

In the previous sections we made reference to the inverse or feedback function denoted ζ . There are at least

two ways to define this function. On the one hand, ζ could be a computer graphics rendering function. On

the other hand, we could estimate an approximate ζ̂ given a set of output-input training examples. In our

implementation, we experimented with both approaches. For ζ , we used computer graphics renderings of

our hand and body models obtained via OpenGL. For ζ̂, we used a one hidden-layer perceptron, with twenty

hidden nodes. In our experience, this provides an adequate and efficient approximation.

The approximate feedback function is useful primarily because it is faster to compute than a graphical

rendering followed by visual feature computation. The key issue to keep in mind is that the feedback

mapping is assumed to be simpler (one-to-one or even many-to-one), otherwise simple functional forms
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would only introduce more estimation errors. Of course, this is just a practical issue. If the feedback

mapping is too complex to approximate easily, we could always rely on the available feedback function ζ .

6.3.3 Computational Performance

For an Athlon 1400 PC with 2GB memory, running unoptimized Matlab 6.0 code, it takes approximately

five hours to train a model with 10 dimensions (input) and 10 dimensions (output), using 4500 patterns, and

40 single hidden layer perceptrons with five hidden nodes each.

Using the same setting, the system can infer body poses at approximately 11 frames per second, using

the Mean Output (MO) algorithm. SMA related computations take approximately 70% of this time. This

time includes OpenGL-based rendering of body poses in ζ . The rest is spent in segmentation and feature

calculations. The Multiple Sample (MS) algorithm takes time proportional to the number of samples used.

Of course, segmentation and feature computation for the segmented image is done only once. We noticed

that for our implementation, if we use the approximate feedback function, ζ̂, the rendering time is reduced

to approximately one-fourth.

6.3.4 Early Stopping During Training

During model training, we used cross-validation for early stopping and to avoid over-fitting as follows:

• Training data: Stop if the log-likelihood changes less than 0.5% averaged over the last ten iterations.

• Held out data: Stop if the held out data log-likelihood average change is negative over the last ten

iterations. Held out data was chosen in the same way as the training and test data.

• Number of iterations: Stop if a maximum of 200 iterations is reached.

7 Experimental Results

We now present experimental results obtained using the SMA in estimating the pose of the human hand and

body. For many additional experiments not included due to space limitations, the reader is referred to [33].

7.1 Hand Pose Estimation Given a Fixed Camera Viewpoint

In our first experiments, the SMA is tested in the task of recovering 3D human hand pose given a fixed

camera viewpoint: a view towards the palm of the hand. For training, we used the Hand-Single-View
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dataset, which contains a total of approximately 9,000 examples. Of these, 3,000 were used for training and

the rest for testing. All experiments were performed on a test set that shared no common poses with the

training set. The input-output pairs were then defined as follows. The input consisted of 10 Alt moments

computed from the silhouette of the hand, as described in Sec. 6.1. The output consisted of 20 joint angles

of a human hand linearly encoded by nine values using Principal Component Analysis (PCA).

In this experiment, the number of specialized functions was set to 20. This number was found to be

optimal in the sense of the Minimum Description Length (MDL) principle [32]; an exhaustive search is

impractical, so we find this number via approximate search. Each mapping function was a one hidden layer,

feed-forward network (multi-layer perceptron) with seven hidden neurons.

7.1.1 Quantitative Results

To measure the accuracy of the hand pose reconstruction, we randomly selected approximately 4,000 frames

not included in the training set. This test set has the advantage that ground truth is available. Using the esti-

mated feedback function ζ̂ in the Mean Output approach (MO), the average L2 error between reconstruction

and ground-truth was 0.1863 radians (approximately 10o), with variance 0.0185. These error estimates are

averaged over joint angles. We ran this experiment with the same test set, but instead used the computer

graphics rendering feedback function ζ . When using ζ , similar accuracy was obtained. The average L2 error

between reconstruction and ground-truth in this case was 0.241 radians, with variance 0.0312. In [33], we

explain in detail the reasons for this relatively small difference in performance.

Fig. 4 shows example reconstructions obtained via the MO approach. In many cases, the reconstruction

is close to the ground truth. In other cases, the silhouette is highly-ambiguous, and the reconstruction does

not match ground truth. A good example is shown in image pair number 34 (the last row-pair, fourth

column), where the camera’s image plane is perpendicular with the axis of the pinky finger. Note that the

estimated hand pose disagrees with the ground-truth in the several joint angles associated with this finger.

Similar effects with other joint angles can be seen in example pairs 8, 26, 37, etc.

Ambiguous configurations are indeed very common with a binary image representation. Note that in

other ambiguous cases shown in Fig. 4 reconstruction is closer to ground truth, e.g., pairs 29, 30, etc.

Possible reasons for this agreement are diverse:

1. The input is not really ambiguous (probabilistically speaking) in the observation space. The other

possible outputs (geometrically speaking) associated with this input may be very unlikely given the

training set. This depends on the underlying structure of the configuration manifold. One of the main
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Figure 4: 40 examples of estimated hand poses chosen uniformly at random. Reconstruction found using the Mean
Output (MO) approach. The feedback function used was estimated from data. Each example consists of a pair of
images: ground-truth (top), and estimate obtained using the mean output algorithm (bottom).

goals of a learning algorithm is to find this structure. Indeed these results show that our algorithm is

finding this structure, since in most cases, MO finds a valid sample from the manifold.

2. Few mapping functions were trained to map this input, therefore the rest of the functions produced

irrelevant (bad) outputs.

3. By chance, among many very similarly probable solutions, the right one was chosen. Of course, even

with the help of chance in this case, the mapping functions needed to provide the right mapping for

the given input x.

The accuracy of the Multiple Samples (MS) inference approach was tested in similar experiments with
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approximately 4, 000 randomly chosen test examples not included in the training set. When the estimated

feedback function ζ̂ was used, the mean L2 error of the most likely sample to the ground-truth was 0.2202

radians with variance 0.0228. The mean error and variance from the best 20 samples was 0.308 and 0.3023

respectively. When we performed the same experiment, but instead used the computer graphics feedback

function ζ , we observed very small quantitative differences. We obtained a mean error of 0.2628 radians

with variance 0.0242 for the most likely sample. The mean error of the best 20 samples was 0.3128 radians

with variance 0.3000.

These experiments confirmed that MO inference seems to provide a reasonable approximation, at least

for this dataset. Recall from Sec. 5.3 that MO inference was based on the premise that the most-likely

reconstruction given by each specialized function provides a good approximation to the best solution given

by the full probability distribution.

7.1.2 Experiments with Real Images

We now test our approach using uncalibrated video sequences, where the camera is pointing towards the

palm of a person’s hand. On average, the hand occupied an area of approximately 200 × 200 pixels. Seg-

mentation was obtained as described in Sec. 6.1.3.

In the first experiment, we use the MO approach to obtain a single best estimate for each segmented

hand. Estimates for 40 frames, taken 0.9 seconds apart, are shown in Fig. 5. Visually we can notice that in

most cases the estimate is a plausible explanation of the segmented silhouette. However, there are also a few

inaccurate reconstructions.

In general, it is expected that the SMA model cannot perform well in all configurations (this is true for

almost any machine learning model) due to the following reasons:

1. Learning is the result of optimizing an expected or average error.

2. The real hand and synthetic hand model features are similar but not the same. Anthropometric differ-

ences can influence inference accuracy.

3. Even the best model could fail in some configurations. Information theory tells us that this is always

the case except when the information in the features is equal to the entropy of the body pose config-

urations; in other words, when features tell us everything needed about the configuration. Otherwise,

there might be multiple explanations for a given visual feature vector.

In order to test the ability of the system to provide these multiple explanations, we tested the Multiple
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Samples (MS) approach. Fig. 6 shows the estimates found using MS. These estimates can be interpreted as

possible hypotheses of hand configurations given the silhouettes.

RV

MO

RV

MO

RV

MO

RV

MO

Figure 5: 40 examples of estimated hand poses captured every 0.9 secs from real video (RV). Reconstruction found
using the Mean Output (MO) approach. The feedback function was computed using computer graphics rendering.

7.2 3D Hand Pose Reconstruction Given an Unrestricted Camera Viewpoint

The SMA is now tested in the task of recovering 3D human hand pose from an unknown camera viewpoint.

For training, we used the Hand-All-Views dataset, which contains a total of approximately 750,000 examples.

Of these, 18,000 were used for training and the rest for testing. The input-output pairs were then defined as

follows. The input consisted of seven Hu moments computed from the silhouette of the hand, as described

in Sec. 6.1. The output consisted of 20 internal joint angles of the hand and two orientation angles. This 22

DOF representation was linearly encoded by nine values using PCA.

The number of specialized functions was set to 45. This number was determined via the MDL criterion,
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Figure 6: Example estimated hand poses obtained using the Multiple Sample (MS) approach using real video (RV).
The feedback function was estimated from data.

as before. Each specialized function was a one hidden layer, feed-forward network with seven hidden nodes.

7.2.1 Quantitative Results

We computed the L2 error in estimating hand pose, and quantitatively compared this measure across views.

Fig. 7 shows the error of the most likely estimate found using the MO approach. From the graphs we

see that views towards the palm of the hand (90◦) are slightly easier to reconstruct on average, while the
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Figure 7: Mean Output (MO) inference performance for unrestricted view tests at given viewpoint latitudes (averaging
over longitude). The feedback function is (a) the estimated ζ̂ (b) the computer graphics rendering ζ. A frontal view of
the hand palm is at latitude β1 = π/2 , longitude β2 = 0.

variance seems similar across views. As expected, the average error is higher than that obtained for the

fixed view hand pose reconstruction experiments. The differences in performance obtained from using ζ

or ζ̂ are relatively small. However, it seems that for unrestricted hand views it is advantageous to use the

computer graphics feedback function ζ . This is probably because estimating this inverse mapping ζ̂ over

unrestricted viewpoint is more complicated than for only frontal hand views (and the mapping is likely to

be more complex also).

Fig. 8 shows the results using the MS approach. Fig. 8(a) shows the error associated with the best

sample. This error behaves very similarly to the MO error. Fig. 8(b) shows the average error computed

using the best 20 samples. This error is higher than that of the best sample. Note that this is not an obvious

result given that the best sample is determined without having knowledge of ground-truth. In fact, if the

average error of the best 20 samples were lower than that of the best sample, then we could infer that our

algorithm is very inaccurate at determining what samples are better. Thus this result positively endorses our

MS algorithm.

For comparison, we used the ground-truth to select the best sample, based on minimum RMSE. In other

words, we have an oracle that picks the sample closest to the ground-truth. The resulting performance graph

is shown in Fig. 8(c). This represents the lower-bound on the reconstruction error using the learned forward

model. The graph is interesting in the sense that it separates the errors from the forward and feedback

models. The feedback model produces a RMSE < 0.35 across views. This is roughly half the total RMSE

error produced by the SMA overall.
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Figure 8: Multiple Samples (MS) inference for unrestricted view tests at given viewpoint latitudes (averaging over
longitude). Feedback functions is the estimated ζ̂. A frontal view to the hand palm is at latitude β1 = π/2 , longitude
β2 = 0. (a) Most probable sample. (b) Average over all samples (20 most probable samples taken). (c) Best sample
(determined using ground-truth information for comparison).

7.2.2 Experiments with Real Images

As before, we test our approach using video collected from a single uncalibrated camera. However, in this

case, the person’s hand can appear at any orientation.

Pose estimates from 40 frames (taken every 0.9 secs apart) obtained via the MO approach are shown in

Fig. 9. Note that there are incorrectly-segmented hands in this sequence. We decided to leave these in to

avoid frame rearrangements (losing the uniform frame sampling), to show that segmentation does not always

work correctly, and to show that this approach is inherently robust to extreme segmentation errors. In this

experiment, there was usually visual agreement between reconstruction and estimate as seen in the figure.

Note that even for a human observer, looking at the segmented silhouettes in the figure, reconstruction is

sometimes ambiguous. There are also some configurations for which the system did not perform correctly.

Fig. 10 shows the estimates obtained via the MS approach. The frames shown were taken approximately

every 0.9 seconds. In the second row, we can see some limitations of the Hu moment feature space: some-

times, different hand orientations are very similar in the feature space. These apparently different hypotheses

may actually be close to each other in terms of their probability, given the features. The same effect repeats

clearly in the third and sixth row. This problem might be alleviated by using a different input feature space.

At an extreme one might consider the full silhouette as a feature. Of course there are important trade-offs to

take into account when considering different features; e.g., invariants, and dimensionality.

7.3 2D Human Body Pose Reconstruction

The SMA is next tested in the task of estimating human body pose. The goal is to estimate the 2D locations of

body markers in the image, given visual features computed from the person’s silhouette. In this experiment,

we use the Body-All-Views dataset, which contains a total of of over 100,000 samples. Of these, 8,000 were
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Figure 9: 40 examples of estimated hand poses captured every 0.9 secs from real video (RV). Reconstruction found
using the Mean Output (MO) approach. The feedback function was computed using computer graphics rendering.

used for training and the rest for testing. The input-output pairs were defined as follows. The input consisted

of the 10 Alt moments computed from the silhouette. The output consisted of 20 2D marker positions (40

DOF), which were then linearly encoded by nine values using PCA.

The number of specialized functions was set to 15. This number was determined via the MDL criterion,

as before. Each specialized function is a one hidden layer, feed-forward network with seven hidden nodes.

7.3.1 Quantitative Results

Fig. 11 shows the reconstruction obtained with the MO approach for frames taken from three synthetic

sequences excluded from the training set. The agreement between reconstruction and observation is easy to

perceive for all frames. Also, for self-occluding configurations, the estimate is still similar to ground-truth.

Fig. 12 shows the average marker error and variance per body orientation in percentage of body height.
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Figure 10: Example estimated hand poses obtained using the Multiple Sample (MS) approach and real video (RV).
The feedback function was computed using computer graphics rendering.

Note that the error is bigger for orientations closer to 0 and π radians. This intuitively agrees with the notion

that at those angles (side-views), there is less visibility of the body parts. We consider this performance

promising, given the complexity of the task and the simplicity of the approach. By choosing poses at random
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Figure 11: Example reconstruction of frames from test sequences with computer graphics-generated silhouettes.
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Figure 12: Marker root-mean-square-error and variance per camera viewpoint (every 2π/32 rads.). Units are per-
centage of body height. Approx. 110,000 test poses were used.

from those excluded from the training set, the RMSE was 10.35% of body height (with 20% variance). In

related work, quantitative performance has usually been ignored, in part due to the lack of ground-truth and

standard evaluation datasets.

7.3.2 Experiments with Real Images

We now test the approach using real video sequences of human body motion. We use the basic segmentation

approach described in Sec. 6.2.3 to obtain silhouettes.

Fig. 13 shows examples of system performance obtained via the MO approach for several relatively

complex motion sequences. Even though the characteristics of the segmented body differ from the ones

used for training, good performance is still achieved. Most reconstructions are visually close to what can be
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thought of as the right pose reconstruction. Body orientation is also generally accurate.

Fig. 14 shows the top-ranked pose samples obtained via the MS approach. Note that despite low-quality

segmentation, the system outputs reasonably accurate pose hypotheses. Orientation is accurate and the

relative limb relationships are maintained. However, we can observe that some poses are inherently difficult

and the estimate lacks enough pose detail to be perceived as a good estimate. For example, the eighth

row shows a side view of a person raising one arm while keeping the other arm at rest. The resulting MS

estimates all show a side-view, however none has the correct arm configuration. This could be due to the

lack of relevant training data, or due to differences between the rendered model and the real body observed.

In this work, we did not pursue use of a more realistic human body renderer. This could affect the

performance with real data since, as in most learning methods, it is critical that the training data be a good

approximation to the data the algorithm will be tested with. Due to differences in shape and width of body

components observed in training versus testing, the visual features may differ. Improving the match between

visual features used in training and testing is an area that we plan to investigate in future research. In theory

this could allow us to adapt our algorithm to different body or hand anthropometric characteristics.
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Figure 13: Reconstruction obtained from observing a human subject (every 10th frame).

8 Conclusions

In this paper, we have described a novel supervised learning framework: the Specialized Mappings Archi-

tecture (SMA). The SMA employs a set of several mapping functions that are learned from training data.

Each specialized function maps certain domains of the input space onto the output space. The SMA learn-

ing formulation uses ideas from Maximum Likelihood estimation and latent variable models. A variant of

the Expectation-Maximization algorithm is used for simultaneous learning of the specialized domains along
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Figure 14: Estimated body poses from real sequences obtained via MS inference.

with the mapping functions. One key advantage of the SMA is that it can model ambiguous, one-to-many

mappings that may yield multiple valid output hypotheses.

Another key advantage of the SMA formulation is its incorporation of a feedback or inverse function,

ζ in statistical inference. Use of ζ affords an alternative to the gating networks of the Mixture of Experts

paradigm [24] in that it allows for simpler forward models (also see [16, 12] for other models). The forward
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model in the SMA assumes that the mixing factors are independent of the input, as seen in Sec. 3. At first

sight, this seems to limit the architecture’s expressiveness. However, the SMA’s combination of forward and

inverse models eliminates this independence assumption, as seen in Sec. 5.1. In other words, ζ provides an

alternative that avoids increasing the forward model complexity without restricting model expressiveness.

Note that in the SMA formulation, different sets of appropriate conditional independence assumptions are

specified by the forward and inverse models. In applications such as those presented in this paper, ζ can be a

computer graphics rendering function or an approximation ζ̂ can itself be learned from training data. Thus,

the SMA exploits available prior information about the structure of the problem.

The SMA framework was demonstrated in a computer vision system that can estimate the articulated

pose parameters of a human body or human hands, given features computed from an image silhouette.

Articulated pose reconstruction from a single image is a particularly difficult problem because this mapping

is highly-ambiguous and complex. We have obtained promising results even using a very simple set of

image features, such as moment invariants of the hand or body’s image silhouette. Choosing the best subset

of image features for this application is by itself a complex problem, and a topic of ongoing research.

The SMA offers several advantages over many previous methods for articulated pose estimation. Many

previous approaches have tried in numerous ways to use camera geometry and/or model registration to per-

form pose estimation, resulting in iterative procedures that require careful choice of initial conditions (model

placement). In the SMA approach no iterative minimization methods are used in pose inference. Moreover,

SMA inference is fully automatic – no manual initialization of the articulated model is required. Another set

of previous approaches attempt to learn articulated model dynamics [6, 18, 39]; however, learning dynam-

ics requires substantially more training data, and tends to produce systems that are biased towards specific

motions. The SMA framework avoids this and learns/estimates pose from a single image only.

It is also important to note that the SMA is a general nonlinear supervised learning algorithm. Thus,

applications of the SMA need not be limited to the vision domain. As a simple example, one could apply

the SMA approach in speech recognition problems, where the input space is given by features computed on

acoustic signals (e.g., cepstral coefficients), and the output space could be the space of phonemes. In this

case, the feedback function would involve an acoustical rendering of phonemes.

Several interesting problems remain for future work. Within the context of articulated pose estimation,

one topic for future investigation is how to adapt the system to a specific body morphology. Integration

of SMA pose estimation with image segmentation for a fully-integrated detection and pose reconstruction

formulation is also needed, and may enable greater robustness to occlusion and noise. More generally, meth-

ods for incorporating knowledge of dynamics in the SMA framework should be investigated, as discussed in
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[33]. Another general problem is how to learn what the best (e.g., visual) features are for specific problems

or datasets. While promising advances have been made in boosting of features [11], extension of the SMA

framework to incorporate such concepts remains a topic for future investigation.
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